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OVERVIEW
Per capita costs were calculated across two sets of data: costs of response within the IFRC system and 
costs of response within the UNOCHA Appeals system. The key sources for this analysis were IFRC GO (In-
ternational Federation of Red Cross and Red Crescent Societies, 2019) and UNOCHA’s FTS (United Nations 
Office for the Coordination of Humanitarian Affairs, 2019). The present-day share of populations affected by 
disasters was calculated based on a single core dataset: EM-DAT (Centre for Research on the Epidemiology 
of Disasters, 2019) .

PER CAPITA COST  
OF RESPONSE, IFRC
The primary source of data regarding the cost of humanitarian response within the IFRC system was IFRC 
GO, a public repository of more than 3,000 IFRC operations and appeals with data available back to 1919. 
The analysis examined the value of funds requested and number of individuals targeted for aid provided 
on a per-disaster basis by this repository. As the intention is to assess the actual financial need per capita 
targeted for aid, the value of requested funds was used in the calculation rather than the funded total of dis-
aster response. Furthermore, research suggests that disaster response needs are chronically underfunded. 

Classification of disasters (IFRC GO)
Disasters were disaggregated according to type, onset speed, and relation to climate change based on ex-
amined literature and authors’ discretion (Development Initiatives, 2018; Webster, et al., 2008). Estimates of 
per capita IFRC costs were limited to disasters with a direct relationship to climate change (table 1). Disaster 
types were combined into broad classifications for ease of analysis within the model.

Earlier iterations of this analysis also disaggregated disasters by five-year time periods, country income 
groupings and by disaster types within regions. Each of these was discarded due to limitations in integrating 
into the Shock Waves Model.

Data cleaning and transformations
Data for events and values earlier than the year 2000 were removed, as were entries which contained no 
data for the number of targeted beneficiaries of aid or the amount of funding requested. 

The numbers of individuals targeted in a disaster was transformed to an annualised value, such that cal-
culated per capita costs are year-equivalent. This was achieved by multiplying the recorded time length of 
disaster occurrence and response in years by the number of individuals aided. 

Currency
The IFRC GO value of requested funds is presented in current-year Swiss francs (CHF); for the purpose of 
analysis, these values were converted to constant 2018 price United States Dollars (USD). 

The process of conversion consisted of deflating the current-year value to constant 2018 prices by Swit-
zerland’s implicit GDP price deflator, and then converting this value to USD by the official 2018 CHF/USD 
exchange rate. All conversion and deflation factors were sourced from the World Bank’s DataBank (World 
Bank, 2019). Values for 2019 were considered as 2018 prices due to a lack of an available 2019 deflator. 
Disasters occurring over multiple years had price data deflated at the average rate across the period.
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Table 1

USED IN MODEL IFRC CLASSIFICATION MODEL CLASSIFICATION ONSET

Yes

Cyclone
Storm

Rapid
Storm surge

Flood
Flood

Pluvial/Flash flood

Drought
Drought/food insecurity Slow

Food insecurity

No

Biological Emergency

Chemical Emergency

Civil Unrest

Cold wave1

Complex Emergency

Earthquake

Epidemic

Fire

Heat wave1 

Insect infestation

Landslide

Population Movement

Transport Accident

Tsunami

Volcanic eruption

Other

An earlier iteration of the analysis explored the use of Purchasing Power Parities (PPPs) as the currency 
conversion approach. This approach was not utilised for the following reasons: 1) converting expressed in 
2018 USD values allowed for the most direct comparison of present day needs with that of the future from 
a donor perspective; 2) PPPs are relatively obscure from the perspective of the audience of the final report; 
3) the most recent year baseline year for PPPs is 2011—values expressed in PPPs were therefore not readily 
identifiable with present day costs.

Analysis
The average cost of humanitarian response per capita was calculated as the sum of per-disaster funds 
requested over the sum of per-disaster year-equivalent beneficiaries targeted. This analysis was split by dis-
aster type and country income group. Country income groups were sourced from the World Bank DataBank.

Confidence intervals (90%) were calculated for each analytical mean through a bias-corrected and acceler-
ated (BCa) bootstrap method (R=10,000).

An additional analysis focused on modelling the marginal cost of humanitarian need based on size of af-
fected population was also explored but ultimately discarded. This is elaborated further at the end of this 
section.

1 While heat waves and cold waves are directly related to climate change, they were not used in this analysis because: 1) the IFRC 
database does not adequately include heat waves 2) cold waves are diminishing due to climate change and 3) neither event type is 
captured in the World Bank’s Shock Waves model.
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Robustness: conflict-associated disasters
For robustness, it was checked whether disasters occurring within a conflict context had statistically signif-
icant differing costs of response per capita than disasters not associated with conflict. 

Whether a disaster was associated with conflict was evaluated at a national level, by year. The presence of a 
conflict context was identified by authors’ discretion based on data from the Aid Worker Security Database 
(Humanitarian Outcomes, 2019). In general, disasters occurring in countries which showed at least one aid 
worker affected by conflict in the same year were considered to be conflict-associated.

Analysis of the per capita cost of humanitarian response disaggregated by conflict and non-conflict contexts 
did not show a statistically significant difference. As a result, all data records were retained for the analysis.

Data limitations
The IFRC GO platform provides comprehensive documentation of allocations from IFRC’s Disaster Relief 
Emergency Fund (DREFs) and Appeals covered by or requested by the IFRC secretariat. While it is open for 
wider reporting across the International Red Cross and Red Crescent Movement, in practice it does not yet 
capture a comprehensive picture of domestic responses by National Red Cross and Red Crescent Societies 
who are able to cover disaster response needs through direct fundraising. For example, the annual disaster 
response operations of the American Red Cross in the United States, a highly disaster-prone country, are 
not captured in this data set. This is the same for most disaster responses from National Societies located 
in high-income countries. Based on available data, the per capita needs in higher-income countries do not 
seem to have a higher degree of uncertainty as a result, but this cannot be entirely ruled out.

Results 
Table 2

IFRC COST OF RESPONSE 2000-TODAY (2018 PRICE USD)

 n Funding 
requirement

Targeted for aid 
(number) Mean Lower CI 

(90%)
Upper CI 

(90%)

Overall 706 1,662,684,019 68,908,687 24.13 17.01 31.52 

Cyclone 116 380,264,789 10,090,411 37.69 20.88 50.18 

Drought 54 261,956,298 11,104,792 23.59 17.80 33.17 

Flood 462 632,070,581 20,484,126 30.86 22.81 39.11 

Food Insecurity 45 367,670,090 26,372,017 13.94 7.19 35.96 

Pluvial/Flash Flood 28 20,503,959 847,050 24.21 13.73 102.03 

Low income 174 405,591,077 14,252,898 28.46 13.73 45.30 

Lower middle income 290 835,992,324 45,688,072 18.30 11.71 25.84 

Upper middle income 189 329,558,768 5,340,139 61.71 40.32 89.14 

High income 34 70,770,542 1,370,747 51.63 43.48 74.44 
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PER CAPITA ESTIMATE  
OF HUMANITARIAN NEED, 
UNOCHA APPEALS
The primary source for costs to the wider humanitarian community was UNOCHA’s FTS and Humanitarian 
Response Plans (HRPs); aggregated data on people targeted was UNOCHA’s Humanitarian Data Exchange 
(United Nations Office for the Coordination of Humanitarian Affairs, 2019). Data contained within these 
sources include the total funding requested and number of individuals targeted on a per appeal basis. Dis-
asters are not directly identified by type, but by locality and year. Comprehensive data was available for the 
years of 2011-2019, covering 232 annual appeals.

Data cleaning and transformations
Appeals which contained no data for either the number of targeted beneficiaries of aid or the amount of 
funding requested were removed. 

The number of targeted beneficiaries of aid were assumed to be annual-equivalent values.

Currency
UNOCHA’s FTS presents requested funding in current-year USD; for the purpose of analysis, these values 
were converted to constant 2018 price USD using the United States implicit GDP deflator.

An alternative deflation utilising the average OECD USD deflator was also completed, however the lack of 
required recent data for all constituent countries meant that this analysis was not utilised.

Analysis
The average cost of humanitarian response per capita was calculated as the sum of per-appeal require-
ments over the sum of per-appeal year-equivalent beneficiaries targeted. 

Confidence intervals (90%) were calculated for the analytical mean through a bias-corrected and accelerat-
ed (BCa) bootstrap method (R=10,000).

Robustness: conflict-associated disasters
For robustness, we check whether appeals occurring within a conflict context have significantly differing 
costs of response per capita than disasters not associated with conflict. 

Whether a disaster was associated with conflict was evaluated at a national level by year. The presence of a 
conflict context was identified by authors’ discretion and data based on the Uppsala Conflict Data Program 
(Uppsala University, 2019).

Analysis of the per capita cost of humanitarian response disaggregated by conflict and non-conflict con-
texts showed a statistically significant difference, with conflict contexts reporting higher per capita costs. 
Conflict-associated disasters were therefore removed from the analysis.
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Data limitations
Humanitarian Response Plans are generally defined on an annual basis, rather than in response to specific 
shocks. Although there is an occasional exception to this in the case of very large unanticipated needs, cov-
ered by Flash Appeals. The focus on annual planning cycles poses significant limitations to distinguishing 
disaster specific humanitarian need from wider forms of urgent need. 

Results 
Table 3

UNOCHA APPEAL COST OF RESPONSE 2011-2019 (2018 USD)

 n Funding 
requirement

Targeted for aid 
(number) Mean Lower CI (90%) Upper CI (90%)

Non-conflict 60 13,266,151,463 117,822,460 112.12 77.12 150.67

Conflict 172 160,131,760,852 623,404,660 256.34 227.23 294.98
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SHARE OF PRESENT-DAY 
POPULATIONS  
AFFECTED BY DISASTERS
The primary source of data for the share of populations affected by disasters was the Centre for Research 
on the Epidemiology of Disasters’ (CRED) Emergency events Database (EM-DAT). EM-DAT contains data on 
more than 22,000 disasters in the world from 1900 to the present day, including the estimated number of 
individuals affected by disasters.

Persons ‘affected’ by a disaster are those “requiring immediate assistance during a period of emergency, i.e. 
requiring basic survival needs such as food, water, shelter, sanitation and immediate medical assistance”. 

Data granularity is by country and by year.

Classification of disasters (EM-DAT)
Disaster types within the EM-DAT repository were classified and grouped according to match the model 
classifications (table 4).

Table 4

USED IN MODEL EM-DAT CLASSIFICATION MODEL CLASSIFICATION ONSET

Yes

Storm Storm
Rapid

Flood Flood

Drought Drought/food insecurity Slow

Data cleaning and transformations
Data for events and values earlier than the year 2009 were removed, as were entries which contained no 
data or zero for the number of individuals affected. 

The numbers of individuals affected in a disaster was transformed to an annualised value, based on the 
recorded disaster length. 

Analysis
The average share of populations affected by climate disasters was calculated by two methods to produce 
a lower and upper bound. The lower bound assumed that disasters occurring in the same year and country 
affected the same cohort of overall population—for example, a flood recorded as affecting 1,000 people 
and a storm affecting 5,000 people would return only 5,000 affected individuals overall. The upper bound 
assumed that disasters are always independent—in the previous example, the 1,000 individuals affected by 
the flood do not overlap with the 5,000 affected by the storm: 6,000 people were recorded as affected overall.

Shares of populations affected were calculated by disaster type for country income groups, per year. Pop-
ulation data were sourced from the World Bank DataBank. Country income groups were also sourced from 
the World Bank DataBank. Population-weighted means across the period 2008-2018 were then produced for 
each income group, by disaster type. Confidence intervals (90%) were calculated for the analytical means 
through a bias-corrected and accelerated (BCa) bootstrap method (R=10,000).
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Results 
Table 5

SHARE OF POPULATION AFFECTED, ANNUAL AVERAGE

Complete overlap (lower bound)

Total affected (number) Mean Lower CI (90%) Upper CI (90%)

Global

Overall 1,719,802,752 2.2% 1.3% 4.8%

Drought 1,109,972,229 1.4% 0.5% 4.0%

Flood 589,867,946 0.8% 0.5% 1.3%

Storm 263,543,195 0.3% 0.2% 0.7%

Wildfire 973,276 0.0% 0.0% 0.0%

Low income

Overall 71,298,813 0.9% 0.4% 2.3%

Drought 63,050,000 0.8% 0.3% 2.1%

Flood 5,405,341 0.1% 0.0% 0.1%

Storm 4,992,191 0.1% 0.0% 0.2%

Wildfire - 0.0% 0.0% 0.0%

Lower middle 
income

Overall 901,340,052 2.9% 0.8% 9.0%

Drought 691,034,094 2.2% 0.1% 8.3%

Flood 163,193,503 0.5% 0.4% 0.7%

Storm 88,999,148 0.3% 0.2% 0.5%

Wildfire 409,664 0.0% 0.0% 0.0%

Upper middle 
income

Overall 642,024,361 2.4% 1.5% 3.7%

Drought 355,877,000 1.3% 0.6% 2.7%

Flood 405,467,251 1.5% 0.9% 2.8%

Storm 78,136,359 0.3% 0.2% 0.5%

Wildfire 17,473 0.0% 0.0% 0.0%

High income

Overall 105,139,526 0.8% 0.1% 2.8%

Drought 11,135 0.0% 0.0% 0.0%

Flood 15,801,851 0.1% 0.0% 0.4%

Storm 91,415,497 0.7% 0.0% 2.8%

Wildfire 546,139 0.0% 0.0% 0.0%
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Table 5 (cont.)

SHARE OF POPULATION AFFECTED, ANNUAL AVERAGE

 

 

No overlap (upper bound)

Total affected (number) Mean Lower CI (90%) Upper CI (90%)

Global

Overall 2,117,082,444 2.7% 1.7% 5.2%

Drought 1,110,198,229 1.4% 0.5% 4.0%

Flood 671,142,675 0.9% 0.6% 1.4%

Storm 334,753,788 0.4% 0.3% 0.7%

Wildfire 987,752 0.0% 0.0% 0.0%

Low income

Overall 73,455,962 1.0% 0.4% 2.3%

Drought 63,050,000 0.8% 0.3% 2.2%

Flood 5,405,341 0.1% 0.0% 0.1%

Storm 5,000,621 0.1% 0.0% 0.2%

Wildfire - 0.0% 0.0% 0.0%

Lower middle 
income

Overall  1,002,092,206 3.2% 1.1% 9.2%

Drought 691,034,094 2.2% 0.1% 8.1%

Flood 181,929,053 0.6% 0.4% 0.8%

Storm 128,719,395 0.4% 0.3% 0.7%

Wildfire 409,664 0.0% 0.0% 0.0%

Upper middle 
income

Overall 933,031,331 3.4% 2.2% 5.4%

Drought 356,103,000 1.3% 0.6% 2.6%

Flood 467,941,478 1.7% 1.0% 2.9%

Storm 108,969,380 0.4% 0.2% 0.7%

Wildfire 17,473 0.0% 0.0% 0.0%

High income

Overall 108,502,945 0.8% 0.2% 2.9%

Drought 11,135 0.0% 0.0% 0.0%

Flood 15,866,803 0.1% 0.0% 0.4%

Storm 92,064,392 0.7% 0.0% 2.8%

Wildfire 560,615 0.0% 0.0% 0.0%
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ADDITIONAL NOTES; 
ALTERNATIVE APPROACHES 
Marginal cost of need
Literature suggests that non-linear unit costing, specifically diminishing marginal unit costs, are used in 
planning the project costs of disaster response (Global Protection Cluster, 2019; Baker & Salway, 2016). 
Testing whether this occurs in the observed datasets requires observing the form of relationship between 
the number of individuals targeted in a disaster (I) and the total cost of need (C) per capita:

High 
income 

Overall         108,502,945  0.8% 0.2% 2.9% 
Drought      11,135  0.0% 0.0% 0.0% 
Flood            15,866,803  0.1% 0.0% 0.4% 
Storm            92,064,392  0.7% 0.0% 2.8% 
Wildfire   560,615  0.0% 0.0% 0.0% 

 

Additional notes; alternative approaches  
Marginal cost of need 
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Δ
𝐶𝐶
𝐼𝐼
= Δ𝑓𝑓(𝐼𝐼) (1) 

Based on empirical observations of the datasets in question, both variables for individuals 
targeted and costs appear to be individually log-normally distributed; taking logs of each 
variable allows then an estimation of the following relationship (where a lowercase term 
represents the natural logarithm of the original): 

𝑐𝑐 − 𝑖𝑖 = 𝛽𝛽! + (𝛽𝛽! − 1)𝑖𝑖 + 𝑢𝑢 (2) 

A Q-Q plot affirms that the residuals of this relationship (𝑢𝑢) are closely normally distributed. A 
Box-Cox plot also confirms that the lowest variance is observed for a log-log transformation. 
This relationship may be estimated by a simple ordinary least squares (OLS) regression. 

Given 𝑈𝑈 is the estimated multiplicative error term, the back-transformed relationship is then: 

𝐶𝐶
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While this methodology more accurately captures the efficiency gains associated with larger 
humanitarian response efforts, it was ultimately discarded due to challenges integrating this 
model into the Shock Waves Model. Specifically, this approach would require projecting the 
absolute size of future disasters in order to identify an appropriate per capita value of 
humanitarian need.  
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 implies a linear (uniform) marginal cost 
of response. 

While this methodology more accurately captures the efficiency gains associated with larger humanitarian 
response efforts, it was ultimately discarded due to challenges integrating this model into the Shock Waves 
Model. Specifically, this approach would require projecting the absolute size of future disasters in order to 
identify an appropriate per capita value of humanitarian need. 
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Table 6

β_1 Lower CI 
(95%)

Upper CI 
(95%) Β_0 Lower CI 

(95%)
Upper CI 

(95%)

Low 
income

Cyclone 0.85 0.78 0.92  766  404 1,453 

Drought 0.68 0.50 0.85      5,282  731 38,178 

Flood 0.62 0.57 0.66 5,765 3,878 8,570 

Food Insecurity 0.56 0.45 0.67    10,826 3,355 34,929 

Pluvial/Flash Flood 0.61 0.49 0.74 4,994 1,476 16,901 

Lower 
middle 
income

Cyclone 0.80 0.74 0.86  782  429 1,428 

Drought 0.77 0.65 0.88  997  293 3,398 

Flood 0.61 0.58 0.64 5,700 4,417 7,355 

Food Insecurity 0.58 0.46 0.70 4,628 1,294 16,555 

Pluvial/Flash Flood 0.66 0.52 0.80 4,950 1,734 14,135 

Upper 
middle 
income

Cyclone 0.67 0.60 0.74 4,163 2,195 7,897 

Drought 0.59 0.47 0.70 5,890 2,137 16,236 

Flood 0.66 0.63 0.69 3,169 2,415 4,157 

Food Insecurity 0.86 0.32 1.40  579 1 494,093 

Pluvial/Flash Flood 0.74 0.69 0.80 1,901 1,236 2,923 

High 
income

Cyclone 0.71 0.61 0.81 2,517 1,158 5,471 

Drought    

Flood 0.70 0.61 0.79 2,196  995 4,850 

Food Insecurity    

Pluvial/Flash Flood       

Per capita economic damage
The humanitarian cost of disasters is not limited to the cost of emergency needs fulfilled by responding 
agencies; the economic costs of disaster, including damage to livestock, homes and property, are far greater. 
Investigating the full economic cost of disasters was undertaken by examining the CRED EM-DAT. The EM-
DAT repository contains estimated values for total economic damage and numbers of individuals affected 
on a per-disaster basis.

It was ultimately regarded that this analysis was outside of the scope of the report. 

Additional datasets
The following datasets were also explored for usage in this analysis but were ultimately determined not 
viable for analysis or outside of the scope of the report:

• IFRC Federation-wide Databank and Reporting System (FDRS)

• ACAPS

• Global Humanitarian Assistance Report 2018
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APPROACH  
AND DEFINITIONS
In this study, we define the number of people in need of humanitarian support after a climate-related disaster 
as the people who are affected by a disaster (i.e., are in the area where a hazard takes place) and are too poor 
to be able to cope with and recover from the disaster without external (non-governmental) support. Here, 
the definition does not include all people who will receive support from their government, local authorities, 
or local charities – for instance thanks to well-functioning social protection systems or affordable insurance 
systems – but only those who need external help, provided by international agencies or NGOs. These people 
are referred to as “vulnerable people” in the rest of this note.

This definition is based on a large body of literature showing that poor people tend to be less able to cope 
with and recover from disasters, not only because their income is lower, but also because they have little 
savings, less access to financial instruments like emergency loans and insurance and are less covered by 
social protection systems and other government-managed tools (Hallegatte et al. 2016).

With this definition, the people in need of humanitarian support can be calculated using the following rela-
tionship:

Additional datasets 
The following datasets were also explored for usage in this analysis but were ultimately 
determined not viable for analysis or outside of the scope of the report: 

- IFRC Federation-wide Databank and Reporting System (FDRS) 
- ACAPS 
- Global Humanitarian Assistance Report 2018 

 

Part 2: Exploring the impact of climate change on international post-disaster 
humanitarian needs 

Approach and definitions 

In this study, we define the number of people in need of humanitarian support after a climate-
related disaster as the people who are affected by a disaster (i.e., are in the area where a 
hazard takes place) and are too poor to be able to cope with and recover from the disaster 
without external (non-governmental) support. Here, the definition does not include all people 
who will receive support from their government, local authorities, or local charities – for instance 
thanks to well-functioning social protection systems or affordable insurance systems – but only 
those who need external help, provided by international agencies or NGOs. These people are 
referred to as “vulnerable people” in the rest of this note. 

This definition is based on a large body of literature showing that poor people tend to be less 
able to cope with and recover from disasters, not only because their income is lower, but also 
because they have little savings, less access to financial instruments like emergency loans and 
insurance and are less covered by social protection systems and other government-managed 
tools (Hallegatte et al. 2016). 

With this definition, the people in need of humanitarian support can be calculated using the 
following relationship: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  

With Affected the number of people exposed the hazard; Population the total population in a 
country, and Vulnerable, the number of people vulnerable in the country. It is assumed that the 
likelihood of being affected by a hazard is independent of whether an individual is vulnerable to 
poverty or not. In some countries, exposure to natural hazards is positively correlated with 
poverty, especially for frequent urban floods and droughts. However, this correlation is far from 
universal and in some countries the correlation is negative (for instance where the richest 
places are coastal cities that are highly exposed to floods). Here, to simplify the analysis, it is 
assumed that exposure and poverty are independent. 

Affected is directly taken from the EM-DAT database, and the fraction of affected population per 
country is taken as the average over the 2008-2018 period. It is assumed that this period 
represents the “current” climate conditions, even though a ten-year period is too short to include 
all possible events.  

With Affected the number of people exposed the hazard; Population the total population in a country, and 
Vulnerable, the number of people vulnerable in the country. It is assumed that the likelihood of being affected 
by a hazard is independent of whether an individual is vulnerable to poverty or not. In some countries, 
exposure to natural hazards is positively correlated with poverty, especially for frequent urban floods and 
droughts. However, this correlation is far from universal and in some countries the correlation is negative 
(for instance where the richest places are coastal cities that are highly exposed to floods). Here, to simplify 
the analysis, it is assumed that exposure and poverty are independent.

Affected is directly taken from the EM-DAT database, and the fraction of affected population per country 
is taken as the average over the 2008-2018 period. It is assumed that this period represents the “current” 
climate conditions, even though a ten-year period is too short to include all possible events. 

The definition of vulnerable people is classically based on the income or consumption level. Here, individuals 
are considered vulnerable if their income is below a certain threshold. It is assumed that people beyond this 
threshold have their own resources to cope with shock, either in the form of savings, insurance, ability to 
borrow, or support from friends, family, social networks, or formal governmental support systems. 

There is a large literature on the threshold below which people are vulnerable to poverty, i.e. likely to fall in 
poverty if affected by a shock, and the threshold of $10 per day has been commonly used. The concept of 
people living below $10 a day being considered vulnerable is based on evidence that a considerable share 
of households living just above a given poverty line is vulnerable to falling below that line over time; see 
(World Bank 2015; López-Calva and Ortiz-Juarez 2014; Birdsall 2015; Ferreira et al. 2012). In other words, 
we assume that household income is an acceptable proxy for the capacity to cope with and recover from 
the shock. More work is needed to refine this vulnerability definition for the specific case of climate-related 
disasters, and to introduce other non-income-related determinant of resilience and vulnerability (On the dif-
ference between income and resilience, see a case study in Accra, Ghana, in Erman et al. 2018).

In the 134 countries covered by the World Bank Global Monitoring Database, with a total of 5.7 billion peo-
ple, approximately 4.6 billion people are living below $10 per day today (in Parity of Purchasing Power US 
dollars).2

2 More information can be find on http://povertydata.worldbank.org/poverty/home/. We did not extrapolate these results to the coun-
tries not included in the data base, which leads to underestimating most of the results. 

http://povertydata.worldbank.org/poverty/home/
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VULNERABLE PEOPLE,  
NOW AND IN THE FUTURE
The number of vulnerable people is expected to evolve over time, as development and economic growth 
takes people beyond the $10/day thresholds. This change in income is used as a proxy for a broader im-
provement in people’s socioeconomic status, with higher financial inclusion and better social protection 
systems that are expected to make people less dependent on external humanitarian support. However, how 
much development will reduce the number of people below $10/day in uncertain and depends on many 
socioeconomic trends and policy choices.

We explore how these numbers will change using two contrasted socioeconomic scenarios, the Shared 
Socioeconomic Pathways SSP4 and 5. The SSP5 describes a world of rapid economic growth, while SSP4 
has a slower (and less inclusive) economic growth. 

To determine how these aggregate scenarios affect the population below $10, we start by assuming that 
all households see the same change in income, following the GDP per capita in the country. In this case, the 
number of people below $10/day in 2030 lie between 2.8 and 3 billion in 2030 and between 350 million and 
2.2 billion in 2050 (Figure 1). Note that there are big differences across countries: the population below $10/
day is growing by 50% and 38% in Afghanistan and Madagascar by 2030, because population growth in the 
scenarios dominates the effect of economic growth. 

However, growth can be more or less inclusive, and the distribution of income within countries may change 
over time too. It is challenging to determine the change in distribution that are achievable with different tools 
and instruments, and full modeling simulations (like in Hallegatte and Rozenberg 2017; Rao et al. 2019; Lak-
ner et al. 2019 ) were not possible for the range of countries and the time horizon considered here. Here, for 
illustrative purposes only, we assume that the share of people below $10/day can decrease by 25% in every 
country in SSP5 in response to more inclusive growth patterns and dedicated poverty reduction policies, and 
that the same share can increase by 25% in SSP4 due to unequal growth trends.3 In this case, the number of 
vulnerable people lies between 2.1 and 3.8 billion in 2030 and 280 million and 2.8 billion in 2050. 

Figure 1: Vulnerable population now, in 2030, and in 2050, in four scenarios with a constant climate.
Vulnerable population (bil.)
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3 An obvious priority for further work is to replace this simple representation of changes in inequality by actual modeling, which 
would make it possible to connect the change in income distribution with explicit socio-economic trends or policy changes. It would 
also allow us to check that the assumptions used here are realistic. 
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Note: Scenario 1 and 2 are the SSP4 and SSP5 with stable within-country distribution; Scenario 3 is SSP4 
with a 25% increase in the share of vulnerable people within countries; Scenario 4 is SSP5 with a 25% 
decrease in the share of vulnerable people within countries.

Global trends can easily hide regional dynamics: in the two SSP4 scenarios (with fixed income distribution 
or slower growth for the poorest), the population below $10 is expected to stay stable or increase in today’s 
low-income countries, while it decreases in the other categories (Figure 2). The effect is particularly strong 
in Sub-Saharan Africa, where most of the countries with increasing vulnerable populations can be found.

Figure 2: Same as Figure 1, but for low-income countries only
Vulnerable population in low-income countries (bil.) 
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Climate change will affect the number of vulnerable people in each country by affecting people’s income and 
consumption level, especially through impacts on agricultural income, food prices, and labour productivity. 
Based on the most recent estimates of the macroeconomic impact of climate change, the impact on GDP 
by 2030 and 2050 is expected to be around 1% (for 2030) and 3% (for 2050). These estimates are highly 
uncertain of course, as they are based on historical data and cannot include the possible effect of thresholds 
that have not been crossed already and do not include potential climate change tipping points.4 And past 
studies have shown that even small impacts on GDP can have significant effect on poverty (Hallegatte et 
al. 2015). However, most estimates of the impact of climate change on the population in poverty (or, here, 
living below $10/day) suggest that the main driver will remain demography and economic growth, at least 
through 2050. In the absence of a simulation of the impact of climate change on the income distribution 
within countries going to 2050, and because of the uncertainty on the effects of climate change on GDP, 
this study does not consider the impact of climate change through the number of people living below our 
vulnerability threshold, making it more conservative. 

In spite of this limit, the main message in this first exploration is that there is a large uncertainty in the num-
ber of vulnerable people in the future – due to uncertainty on future patterns of economic growth but also on 
future policies implemented to reduce poverty and make people more resilient, and on future climate change 
impacts. Even though stability in the global number of vulnerable people cannot be ruled out, we can expect 
a global decrease in this population by 2030 and 2050. At the same time, a demography-driven increase in 
vulnerable populations in low-income countries (especially in Sub-Saharan Africa) is likely by 2030.

4 Including for instance the threshold on agricultural production (Schlenker and Lobell 2010; Schlenker and Roberts 2009) or on 
human physiology (Im, Pal, and Eltahir 2017). 
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HUMANITARIAN NEEDS,  
NOW AND IN THE FUTURE
When projecting humanitarian needs from now to 2030 or 2050, the impact of climate change will arise 
from two channels. First, climate change may slow down economic growth and affect income distribution 
within countries. As discussed earlier, this effect is expected to increase the number of vulnerable people, 
compared with a baseline estimate with constant climate. 

Second, climate change will directly increase the fraction of the population affected by climate-related dis-
asters every year. In the Shock Wave report, as a benchmark, two scenarios were used: one in which the 
fraction of the global population affected by a disaster each year increases from 1.4% to 2% because of the 
effect of climate change on the frequency, intensity, and geographic distribution of extreme weather events; 
and one in which it increases to 3%. These assumptions were based on a review of the literature on future 
climate-related disaster impacts, using scenarios without ambitious additional resilience and adaptation 
efforts (IPCC 2012; Bouwer 2013; H. Winsemius et al. 2015; H. C. Winsemius et al. 2013; Hallegatte et 
al. 2013). Overall, flood exposure is expected to increase in response to heavier rainfall and sea level rise; 
drought exposure is expected to increase, not only due to reduced average precipitation in some regions, but 
also increased evaporation with higher temperature. The future of hurricanes remains a debated question 
and future trends are likely to be different in different ocean basins, but there is an expectation of higher 
frequency of the most intense storms, with the coastal flood potential magnified by sea level rise. And 
heat waves are expected to increase very rapidly, with unprecedented heat episodes becoming increasingly 
frequent and reaching in some regions levels that are close to physiological limits. 

Of course, the real increase will depend on the efforts and policies that will be made to reduce risks and 
adapt to climate change, and more pessimistic or optimistic scenarios are possible. Here, we explore future 
possible outcomes with four contrasted scenarios:

• A SSP4-based scenario, with slow growth and stable within-country distribution of income, with the 
global population affected by disaster annually growing from 1.4 to 2% per year 2030 and to 3% per 
year in 2050. 

• A SSP5-based scenario, with rapid growth and stable within country distribution of income, and the 
global population affected by disaster annually growing from 1.4 to 2% per year 2030 and to 3% per 
year in 2050.

• A pessimistic scenario, based on SSP4 but with unbalanced growth, and the global population affected 
by disaster annually growing from 1.4 to 3% per year 2030 and to 5% per year in 2050. This scenario 
assumes little action to reduce risk exposure and rapid climate change, but is not the worst-case 
scenario, since it does not include any large-scale tipping point in the climate system and assumes 
continued growth in productivity leading to positive growth in GDP per capita in all countries in the 
world. 

• An optimistic scenario, based on SSP5 but with inclusive growth, and the global population affected by 
disaster annually growing from 1.4 to 2% per year 2030 and to 3% per year in 2050.

An obvious next step in this analysis is to consider country-per-country changes in exposure, since hazards 
are expected to increase or decrease differently in different regions of the world. And for large countries like 
India, China, Nigeria, or Brazil, working at the subnational level would be preferable. 

Also, the increase in people exposed is highly dependent on policies and adaptation measures. For instance, 
risk-sensitive land-use planning could make the fraction of people exposed to floods decrease (instead of in-
crease as assumed here). And irrigation infrastructure can reduce the number of people affected by drought. 
Here, the estimates are used to illustrate the “cost of doing nothing”—that is, futures without ambitious 
adaptation and resilience actions.

In the two most optimistic scenarios, the need for external humanitarian support basically disappears by 
2050, even if the number of people affected by disasters increases over time (Figure 3, upper panel). This 
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is because countries and regions become increasingly self-sufficient as their income increases. Of course, 
this is based on extreme assumptions: rapid and inclusive economic growth, with a parallel improvement 
in the capacity and willingness of government and local actors to provide support to affected population, 
and limited climate change. The main message here is that it is possible to build realistic scenarios in which 
almost all countries can manage climate-related disasters on their own by 2050, even with climate change.5

In our most pessimistic scenario, the picture is very different: the number of people in need annually increas-
es significantly by 2030 (+66%) and almost doubles by 2050 (+85%). In this scenario, economic growth is 
not fast enough to compensate for the effect of climate change on the number of people affected by natural 
hazards every year (and a significant but smaller demographic effect). 

Figure 3: Change in the number of people in need of external humanitarian support (upper panel)  
and change in annual costs (bottom panel), in four scenarios: SSP4, SSP5, Pessimistic, and Optimistic. 
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5 The fact that they can manage does not mean that the costs of these disasters is not taking up a growing share of these countries’ 
income, thereby strongly affecting the well-being of the population. Also, an important caveat is that the analysis does not consider 
the special situation of small islands and countries: even high-income countries can be unable to manage a disaster when 100% of 
the country population is affected at once, as illustrated by the recent events in the Caribbean.
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The estimates for the population in need every year can be translated into cost estimates, using data on past 
interventions (Figure 3, bottom panel). Here, the cost of providing basic survival support to the population 
in need is estimated using IFRC data, aggregated per country income class. Average intervention costs 
are estimated at $28 in low-income countries, $18 in lower-middle income countries, $62 in upper-middle 
income countries, and $51 in high-income countries.6 Of course, these numbers hide a large heterogeneity 
across situations. Also, they are assumed constant over time in the present study (see a discussion in the 
conclusion).

Assuming per capita costs remain constant in the future, total annual costs decrease in most scenarios 
(Figure 3, bottom panel). Across scenarios, costs tend to decrease faster (or increase more slowly) than 
the total number of people at risk, because of the distribution of people in need. In today’s data, support 
costs are the highest in upper-middle income countries, and these countries are those where the vulnerable 
population is dropping the fastest. The decrease in upper-middle income countries dominates expected 
increases in low-income countries.

In the pessimistic scenario, however, there is a large increase, by 34% in 2030 and over 50% in 2050. Most of 
the increase takes place in low-income countries, where the increase in the number of people in need and in 
cost exceeds 350% in the pessimistic scenarios (Figure 4).

Figure 4: Same as Figure 3, but for low-income countries only.

People in low-income countries in need of humanitarian aid (% change)
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6 These differences arise from differences in the cost of providing the same goods and services in different contexts, but also the 
fact that the goods and services provided are different across countries. A convergence over time in the costs and types of goods 
and services has not been considered here.
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THE IMPACT  
OF CLIMATE CHANGE 
Figure 5 shows how climate change affects the number of people in need of humanitarian assistance due 
to climate-related disasters, and the corresponding increase in humanitarian cost (in relative terms7). The 
effect of climate change is driven by the change in the number of people affected every year, but the effect 
is mediated by the change in socioeconomic context. 

While the increase in climate change impacts would translate into higher needs and higher costs in all 
baseline scenarios, the increase ranges from less than 20% in 2030 in our optimistic scenario (with rapid 
and inclusive economic growth and “only” 21 million more people in need in 2030) to almost 40% in 2030 in 
our most pessimistic case (slow and inequal development, with more than 50 million more people in need 
every year). 

This result confirms many previous studies8, and highlights the fact that the future socio-economic impacts 
of climate change depends as much on the socioeconomic context (especially poverty and the instruments 
people have to cope and adapt) as on the physical impacts of climate change themselves. 

7 Calculating the absolute cost in dollars is possible, starting from our estimate of the total “need” to support everybody today, which 
is around $3.8 billion per year. In this case, the most pessimistic scenario leads to an increase in financial needs of $1.5 billion 
in 2030 and $3 billion in 2050. However, due to the large uncertain and the many opportunity to reduce these costs through risk 
management policies, these numbers remain illustrative of the orders of magnitude, more than precise estimates of future costs.
8 Such as (Hallegatte et al. 2015; O’Brien and Leichenko 2000; IPCC 2014; Kriegler et al. 2014).
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Figure 5: Increase in population in need (upper panel) and annual humanitarian costs 
(bottom panel, in percent) in 2030 and 2050 in the four scenarios.
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A SENSITIVITY ANALYSIS –  
USING A DIFFERENT 
VULNERABILITY LINE
The use of different scenarios shows that results are highly sensitive to assumptions regarding socioeco-
nomic growth and patterns. This sensitivity shows the opportunity of having good development patterns 
that take people out of poverty and vulnerability and make them more resilient. Particularly important is 
the assumption regarding the within-country distribution (seen for example in the different seen in Figure 1 
between scenario one (SSP4) and three (Pessimistic). A first conclusion is thus that trends in inequality are 
as important as aggregate GDP growth (a point made for the future of poverty in Lakner et al. 2019, using 
assumptions on how the Gini will change over time). More work is therefore needed on the relationship 
between poverty, inequality, and vulnerability, so that the simple assumptions made in this analysis can be 
refined (and connected to policy options).

The choice of a $10 poverty line is somewhat subjective. The choice of the line depends indeed on objective 
factors, such as the income level at which people get access to emergency borrowing or insurance, or the 
income level at which people are able to save enough to deal with a shock. But it also depends on subjective 
choices, related to worldviews and policy choices, such as defining a level at which well-being impacts 
become unacceptable, triggering external assistance. Because of this subjectivity, we run the same analysis 
with a $6 line, as a sensitivity analysis.

Of course, using a $6 line instead of a $10 line reduces the number of people in need, and therefore current 
and future funding needs. Population today drops (in our sample of countries) from 4.7 to 3.6 billion people 
living in vulnerability (i.e. below the line). The number of people in need every year drops from 108 million to 
85 million, and the total resources required to meet this need drop from $3.5 billion to $2.5 billion. 

Using a $6 line instead of a $10 line does also change our results in terms of the relative impact of climate 
change (i.e. the change in impacts, compared with today’s situation). We find that climate change makes an 
additional 10 to 25 million people vulnerable to poverty by 2030, and up to 36 million in 2050 in the pessimis-
tic scenario. These numbers are smaller than with the $10/day line, as is the relative increase in cost: costs 
increase by 10 to 26% in 2030. Costs in 2050 are stationary in the optimistic scenario relative to today, and 
increase by up to 42% in the pessimistic scenario.
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Figure 6: As in Figure 5, but with a $6/day vulnerability line
Vulnerable population increase due to climate change (mil.)
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CONCLUSION
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It’s important to note that these estimates are mostly illustrative:

• The change in the population at risk of poverty depends on the socioeconomic scenario that is select-
ed. More rapid and inclusive growth could easily make the population at risk decrease faster, but lower 
development (or localized economic or geopolitical crises) could increase this population. Also, the 
assumption used regarding the macroeconomic impacts of climate change (i.e. the impact on GDP 
growth) are quite conservative, explaining why climate change does not affect more significantly the 
share of the population at risk of poverty.

• The change in the number of people affected by a natural hazard every year depends on efforts to 
improve risk-informed land-use planning and other risk reduction measures and policies, from building 
dikes to protecting mangroves and wetlands. This not only helps to manage today’s known risks but 
prevents the creation of future risks. 

• These estimates are only looking at natural hazards. However, disasters and climate change often 
interact with stability and conflicts. Some studies suggest the existence of a link between disasters 
and violence, which is not accounted for the present studies. 

• The cost of humanitarian support is highly dependent on the cost per person, which is very different 
across countries and cases and is assumed constant in these simulations. This cost depends on 
multiple factors, including (1) how much support people receive (the generosity of support); and (2) 
the transaction costs (the efficiency of support). Total costs could therefore be much higher than our 
estimates, for instance because support per capita is increased to ensure people do not experience 
long-lasting impacts on their physical and mental health, or much lower, for instance because new 
technologies help target people in need and provide support at a much lower cost. 

In spite of their simplicity, these scenarios illustrate two important ideas. 

First, rapid and inclusive development could make countries and population much better able to manage 
shocks, reducing the need for external humanitarian support. However, slow growth and increasing ine-
quality could lead to a stable or even increasing population in need of externally-provided humanitarian 
support every year due to climate-related disasters. And even if the global population in need declines, 
an increase in low-income countries remains likely. 

Second, the effect of climate change on the people in need of humanitarian support is expected to ma-
terialize through more intense and frequent disasters, more than through an increase in the vulnerable 
population. In pessimistic scenarios, the combination of slow and unequal growth with climate change 
impacts can lead to significant increases in annual cost of external humanitarian support. However, 
since this effect is largely driven by the number of affected people every year, it can be mitigated by 
adaptation and risk mitigation efforts and policy. 

The good news is that the socioeconomic impacts of climate change – and the consequences on well-being –  
depend largely on the socioeconomic context in which physical impacts occur, and they can therefore be 
reduced by appropriate development and risk management policies. 

Finally, the support costs per capita depend on the efficiency of the support, but also on political and ethical 
choices (how much do rich countries and people want to help others affected by disasters and unable to 
cope by themselves?). Changes in these factors can dominate the changes in the population in need and are 
likely to remain the main drivers of future humanitarian costs. 
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